由变频器构成的交流调速系统普遍存在的问题是,系统运行在低频区域时,其性能不够理想,主要表现在低频启动时启动转矩小,造成系统启动困难甚至无法启动。由于变频器的非线性产生的高次谐波,引起电动机的转距脉动及电动机发热,并且电动机运行噪声也加大。低频稳态运行时,受电网电压波动或系统负载的变化及变频器输出电压波形的奇变,将造成电动机的抖动。当变频器距电动机距离较大时及高次谐波对控制电路的干扰,较易引起电动机的爬行。由于上述各种现象,严重降低由变频器构成的调速系统的调速特性和动态品质指标,本文对系统的低频机械特性和变频器的低频特性进行分析,提出采取相应的措施,以使系统的低频运行特性能得以改善。
一、变频器低频机械特性
1、低频启动特性
异步电动机改变定子频率F1,即可平滑地调节电动机的同步转速,但是随着F1的变化,电动机的机械特性也将发生改变,尤其是在低频区域,根据异步电动机的较大转距公式:
Temax=3/2{np(U1/W1)2}/{R1/W1+/(R2/W1)2+(LL1+LL2)2}式中np—电动机较对数;
R1—定子每相电阻;
R2—折合到定子侧的转子每相电阻;
LL1—定子每相漏感;
LL2—折合到定子侧的转子每漏感;
U1—电动机定子每相电压;
W1—电源角频率
可见Temax是随着W1的降低而减小,在低频时,R1已不可忽略。Temax将随着W1的减小而减小,启动转距也将减小,甚至不能带动负载。
2、低频稳态特性
电动机稳态运行时的转距公式如下:
TL=3np(U1/W1)2SW1R2/{(SR1+R2)2+S2W2(LL1+LL2)2}
在角频率W1为额定时,R1可以忽略。而在低频时,R1已不能忽略,故在低频区时由于R1上的压降所占的比重增加,将无法维持M的恒定,特别是在电网电压变化和负载变化时,系统将出现抖动和爬行。
网址: